

## STRUCTURE OF MARITIMIN, A SESQUITERPENE LACTONE FROM *ARTEMISIA MARITIMA GALLICA*

ANTONIO G. GONZÁLEZ, ANTONIO GALINDO, HORACIO MANSILLA and ANGELES GUTIÉRREZ

Departamento de Química Orgánica, Universidad de La Laguna; Instituto de Productos Naturales Orgánicos, CSIC, Carretera La Esperanza 2, La Laguna, Tenerife, Spain

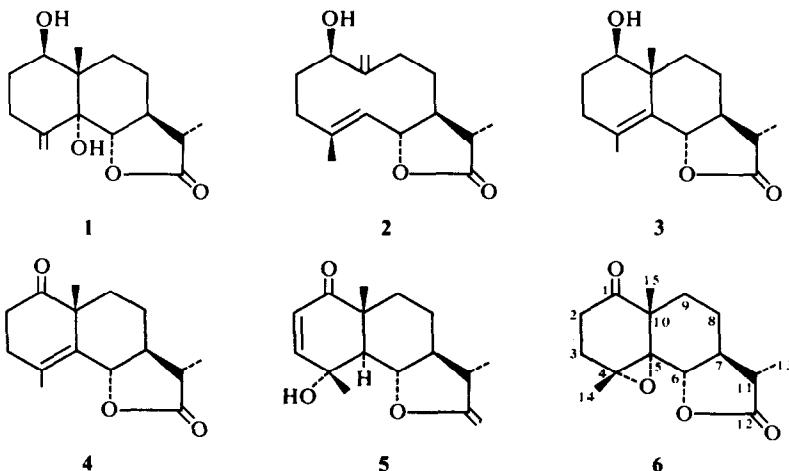
(Received 5 December 1980)

**Key Word Index**—*Artemisia maritima gallica*; Compositae; sesquiterpene lactones; 1-keto-6 $\beta$ ,7 $\alpha$ ,11 $\beta$ -H-selin-4(5)-en-6,12-olide; vulgarin; maritimin.

**Abstract**—1-Keto-6 $\beta$ ,7 $\alpha$ ,11 $\beta$ -H-selin-4(5)-en-6,12-olide, vulgarin and a new eudesmanolide, maritimin, were isolated from *Artemisia maritima gallica*. The structure and stereochemistry of this lactone have been determined by spectral studies and chemical transformations.

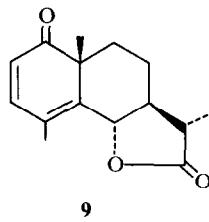
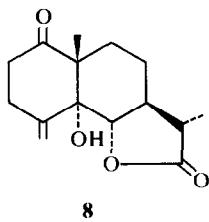
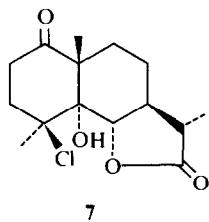
### INTRODUCTION

Artemin (1), gallicin (2) and 1 $\beta$ -hydroxy-6 $\beta$ ,7 $\alpha$ ,11 $\beta$ -H-selin-4(5)-6,12-olide (3) have been described as constituents of *Artemisia maritima gallica* [1, 2]. Their biosynthetic relationships suggest that 2 represents an intermediate stage in the overall synthetic pathway leading to eudesmanolides from gallicin [2]. Re-examination of *A. maritima* has shown that epoxidation is an important route of entrance of oxygen into natural organic compounds.


### RESULTS AND DISCUSSION

The method described in the Experimental provided 6 sesquiterpene lactones; 5 have been identified by their physical constants and spectral data as artemin (1), gallicin (2) 1 $\beta$ -hydroxy-6 $\beta$ ,7 $\alpha$ ,11 $\beta$ -H-selin-4(5)-en-6,12-olide (3), 1-keto-6 $\beta$ ,7 $\alpha$ ,11 $\beta$ -H-selin-4(5)-en-6,12-olide (4) and vulgarin (5) previously obtained in this laboratory [1-5]. The sixth compound, hitherto unreported, has been called maritimin (6).

Maritimin (6), C<sub>15</sub>H<sub>20</sub>O<sub>4</sub>, m/z 264 [M]<sup>+</sup> had IR bands at 1778 and 1710 cm<sup>-1</sup> indicative of a  $\gamma$ -lactone and a cyclohexanone; the composition and the absence of hydroxyl group absorptions in the IR spectrum suggested the presence of an epoxy group. Its <sup>1</sup>H NMR spectrum showed a doublet ( $J$  = 9 Hz) at  $\delta$  4.34 due to the lactonic proton (H-6), a singlet at 1.68 assigned to a methyl attached to the epoxy grouping, a singlet at 1.27 representative of the angular methyl (10-Me) and a doublet ( $J$  = 7 Hz) at 1.25 attributable to a secondary methyl (11-Me).




The position of the ketone group at C-1 was determined by the chemical shift of the 10-Me [6] and the stereochemistry of the lactone ring was established as *trans* from the values of the coupling constant  $J_{6,7}$  (9 Hz).

Further support for the structure of maritimin was found in the analysis of the <sup>13</sup>C NMR spectrum. This spectrum showed absorptions due to 15 carbon atoms, a ketonic group, a lactonic carbonyl, 2 methine carbons, 3 carbons joined to oxygen, 4 methylene carbons, 1 quaternary carbon and 3 methyl groups. These data agree with the proposed structure (6).



The *S*-configuration ( $\beta$ -H) is assigned to C-11 because of the chemical shift of C-13 ( $\delta$  12.32); according to Pregosin *et al.* [7] if the configuration were *R* the shift of C-13 in *trans*-lactones would be between  $\delta$  9.5 and 10. We propose the configuration  $\alpha$  for the epoxy group on the basis of the chemical shift of C-7; according to Kori *et al.* [8] the variation in chemical shift of the homoallylic carbon ( $\gamma$  from oxygen) bearing an axial hydrogen atom is strongly dependent upon the configuration of the epoxide ring. If the epoxide oxygen and the axial hydrogen in the  $\gamma$ -position (C-7 in maritimin) are *cis* to one another, the carbon atom bearing the hydrogen is always strongly shielded (3.5–6 ppm). However, in the case of a *trans* relationship, the chemical shift at the  $\gamma$  carbon is only slightly affected. The chemical shift of C-7 in **4** was 53.03, in accordance with the reported values for similar compounds [7] (Table 1). However, the chemical shift of C-7 in maritimin (**6**) was 48.46 ( $\Delta\delta = -4.57$ ); this value suggests a *cis* relation of H-7 and the epoxy group.

Maritimin (**6**) was converted by warming with THF–HCl into the chlorohidrin (**7**). The exceptionally low field at the 10-Me ( $\delta$  1.58) is probably due to its proximity to the ketonic group (C-1) and to the chlorine atom (C-4) which is disposed axially ( $4\beta$ ). Exposure of **7** to bases resulted in dehydrochlorination to **6**. The treatment of **6** with  $\text{BF}_3$ -etherate led to ketone (**8**) and dienone **9**, compounds previously reported [4, 9].



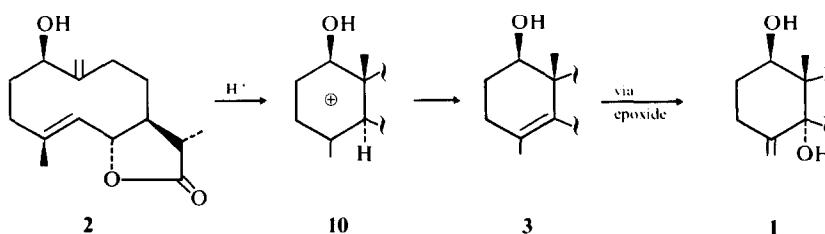
It can be deduced from the foregoing data that maritimin is 1-keto-4 $\alpha$ ,5 $\alpha$ -epoxy-6 $\beta$ ,7 $\alpha$ ,11 $\beta$ -H-selin-6,12-olide (**6**). The structure and stereochemistry of maritimin was further confirmed by treatment of **4** with *m*-chloroperbenzoic acid; the oxide thus obtained is identical with the natural product. Peracid oxidation of **4** takes place on the less hindered side forming the  $\alpha$ -epoxide stereoselectively.

This result supports the previously suggested hypothesis [2] regarding the biogenetic relationships between gallicin (**2**), 1 $\beta$ -hydroxy-6 $\beta$ ,7 $\alpha$ ,11 $\beta$ -H-selin-4(5)-en-6,12-olide (**3**) and artemin (**1**) (Scheme 1).

Table 1.  $^{13}\text{C}$  NMR spectral data for compounds **4**, **5** and **6**\*

| Carbon | 4                           | 5               | 6                           |
|--------|-----------------------------|-----------------|-----------------------------|
| 1      | 212.50                      | 201.2           | 210.68                      |
| 2      | 35.03 <sup>a</sup> <i>t</i> | 125.38 <i>d</i> | 31.00 <sup>b</sup> <i>t</i> |
| 3      | 35.88 <sup>a</sup>          | 152.03 <i>d</i> | 33.44 <sup>b</sup> <i>t</i> |
| 4      | 130.18                      | 69.97           | 65.97 <sup>c</sup>          |
| 5      | 126.58                      | 54.58 <i>d</i>  | 63.59 <sup>c</sup>          |
| 6      | 81.54 <i>d</i> †            | 79.48 <i>d</i>  | 76.59 <i>d</i>              |
| 7      | 53.03 <i>d</i>              | 52.34 <i>d</i>  | 48.46 <i>d</i>              |
| 8      | 23.81 <i>t</i>              | 22.64 <i>t</i>  | 22.88 <i>t</i>              |
| 9      | 32.95 <i>t</i>              | 34.22 <i>t</i>  | 27.89 <i>t</i>              |
| 10     | 48.82                       | 46.29           | 49.19                       |
| 11     | 40.76 <i>d</i>              | 40.47 <i>d</i>  | 40.41 <i>d</i>              |
| 12     | 177.84                      | 178.27          | 177.96                      |
| 13     | 12.25 <i>q</i>              | 12.40 <i>q</i>  | 12.32 <i>q</i>              |
| 14     | 19.65 <i>q</i>              | 19.72 <i>q</i>  | 19.41 <i>q</i>              |
| 15     | 23.31 <i>q</i>              | 23.66 <i>q</i>  | 20.65 <i>q</i>              |

\* Signals were assigned by means of off-resonance decoupled spectra.


† Indicates multiplicity on off-resonance partially decoupled spectra, signal without indication appeared as singlets.

a, b, c: Assignments may be interchanged.

## EXPERIMENTAL

General experimental details for extraction have been described previously [1]. Mps were determined with a Kofler hot-plate apparatus and were uncorr. IR spectra were taken with solns in  $\text{CHCl}_3$ , UV spectra used  $\text{EtOH}$ , 90 MHz  $^1\text{H}$  NMR and 20 MHz  $^{13}\text{C}$  NMR were in  $\text{CDCl}_3$  (TMS as int. reference). Optical rotations were measured with solns in  $\text{CHCl}_3$ . CC was carried out with Merck Sil gel (0.05–0.2 mm) or Merck neutral  $\text{Al}_2\text{O}_3$  (activity IV).

1-Keto-6 $\beta$ ,7 $\alpha$ ,11 $\beta$ -H-selin-4(5)-en-6,12-olide (**4**). The extract was chromatographed on Si gel. Elution with petrol– $\text{EtOAc}$



Scheme 1.

(8:2) gave compound **4** (4.5 g, 0.04%). Recrystallization from EtOAc-*n*-hexane gave needles, mp 116–118°;  $[\alpha]_D$  –115° (c, 0.2%); IR  $\nu_{\text{max}}$  cm<sup>–1</sup>: 1780 (γ-lactone) 1710 (ketone); MS: M<sup>+</sup> at m/z 248; <sup>1</sup>H NMR: δ 1.23 (3 H, d, *J* = 7 Hz, 11 – Me), 1.33 (3 H, s, 10 – Me), 1.98 (3 H, s, 4 – Me), 4.62 (1 H, d, *J* = 9 Hz, H – 6). (Found: C 72.41; H 8.02. Calc. for C<sub>15</sub>H<sub>20</sub>O<sub>3</sub>: C 72.55; H 8.12%).

*Vulgarin* (**5**). Elution with petrol-EtOAc (1:1) gave compound **5** (25 mg, 0.0002%). Recrystallization from Me<sub>2</sub>CO-*n*-hexane gave needles mp 176–177°  $[\alpha]_D$  +39° (c, 0.3%); IR  $\nu_{\text{max}}$  cm<sup>–1</sup>: 3520 (OH) 1780 (γ-lactone) 1675 (ketone  $\alpha,\beta$ -unsaturated) UV  $\lambda_{\text{max}}$  nm: 215; <sup>1</sup>H NMR: δ 1.23 (3 H, s, 10 – Me), 1.28 (3 H, d, *J* = 7 Hz, 11 – Me), 1.55 (3 H, s, 4 – Me), 2.36 (1 H, d, *J* = 10 Hz, H – 5), 4.25 (1 H, dd, *J* = 9, 10 Hz, H – 6), 5.90 (1 H, d, *J* = 10 Hz, H – 2), 6.61 (1 H, d, *J* = 10 Hz, H – 3). (Found: C 68.36; H 7.75. Calc. for C<sub>15</sub>H<sub>20</sub>O<sub>4</sub>: C 68.16; H 7.63%).

*Maritimin* (**6**). Fractions 63–80 from the chromatography was repeatedly chromatographed on Si gel. Elution with C<sub>6</sub>H<sub>6</sub>-EtOAc (1:1) gave compound **6** (400 mg, 0.003%). Recrystallization from petrol-EtOAc gave needles, mp 176–178°;  $[\alpha]_D$  –42° (c, 0.3%); IR  $\nu_{\text{max}}$  cm<sup>–1</sup>: 1778 (γ-lactone) 1710 (ketone); MS: M<sup>+</sup> at m/z 264; <sup>1</sup>H NMR: δ 1.25 (3 H, d, *J* = 7 Hz, 11 – Me), 1.27 (3 H, s, 10 – Me), 1.68 (3 H, s, 4 – Me), 4.34 (1 H, d, *J* = 9 Hz, H – 6). (Found: C 67.85; H 7.53. Calc. for C<sub>15</sub>H<sub>20</sub>O<sub>4</sub>: C 68.16; H 7.63%).

*Acid treatment of maritimin* (**6**). (a) Compound **6** (100 mg) was dissolved in THF (10 ml) and THF (10 ml) was added, through which HCl gas was bubbled for 1 min. The mixture was stirred at room temp. for 17 hr, poured into H<sub>2</sub>O, extrd with CHCl<sub>3</sub>, washed with NaCl saturated, dried, concd *in vacuo* and chromatographed on Si gel, yielding compound **7** (34%) and small quantities of the ketone **8** and dienone **9**. Recrystallization from Me<sub>2</sub>CO-*n*-hexane gave needles mp 202–204°;  $[\alpha]_D$  +67.8° (c, 0.2%); IR  $\nu_{\text{max}}^{\text{KBr}}$  cm<sup>–1</sup>: 3480 (OH) 1770 (γ-lactone) 1725 (ketone); MS m/z: 300 [M]<sup>+</sup>, 264 [M – HCl]<sup>+</sup>; <sup>1</sup>H NMR: δ 1.25 (3 H, d, *J* = 7 Hz, 11 – Me), 1.58 (3 H, s, 10 – Me), 1.86 (3 H, s, 4 – Me), 4.68 (1 H, d, *J* = 8 Hz, H – 6). (Found: C 59.98; H 6.85; Cl 11.94. Calc. for C<sub>15</sub>H<sub>21</sub>O<sub>4</sub>Cl: C 60.00; H 7.0; Cl 11.66%).

(b) Compound **6** (266 mg) was dissolved in C<sub>6</sub>H<sub>6</sub> (10 ml) and BF<sub>3</sub> etherate (1 ml), freshly distilled, was added. The mixture was stirred at room temp. for 2 hr, poured into a cold satd soln of NaCO<sub>3</sub>H, extrd with CHCl<sub>3</sub>, dried, concd *in vacuo* and chromatographed successively on neutral Al<sub>2</sub>O<sub>3</sub> (activity IV) (*n*-hexane-EtOAc, 7:3) and Si gel (*n*-hexane-EtOAc, 1:1). Repeated recrystallization from CH<sub>2</sub>Cl<sub>2</sub>-*n*-hexane gave needles of compound **9** (10%) mp 258–261°;  $[\alpha]_D$  +206.5° (c, 0.2%); IR  $\nu_{\text{max}}$  cm<sup>–1</sup>: 1775 (γ-lactone) 1710 (ketone) 1650 (double bond);

<sup>1</sup>H NMR δ 1.16 (3 H, s, 10 – Me), 1.23 (d, *J* = 7 Hz, 11 – Me), 4.31 (1 H, d, *J* = 10 Hz, H – 6), 5.25 (2 H, bs, C<sub>4</sub>=CH<sub>2</sub>). (Found: C 68.53; H 7.64. Calc. for C<sub>15</sub>H<sub>20</sub>O<sub>4</sub>: C 68.16; H 7.63%).

Recrystallization of the mother liquor from CH<sub>2</sub>Cl<sub>2</sub>-*n*-hexane gave needles (40%), mp 137–140°;  $[\alpha]_D$  –118° (c, 0.2%); IR  $\nu_{\text{max}}$  cm<sup>–1</sup>: 1775 (γ-lactone) 1665, 1630 ( $\alpha,\beta$ -unsaturated ketone); UV  $\lambda_{\text{max}}$  nm: 325 (log ε = 3.6); MS: M<sup>+</sup> at m/z 246; <sup>1</sup>H NMR: δ 1.24 (3 H, d, *J* = 7 Hz, 11 – Me), 1.34 (3 H, s, 10 – Me), 2.18 (3 H, d, *J* = 2 Hz, 4 – Me), 4.73 (1 H, d, *J* = 10 Hz, H – 6), 6.04 (1 H, d, *J* = 10 Hz, H – 2), 6.85 (1 H, d, *J* = 10 Hz, H – 3).

*Alcalin treatment of 7*. Compound **7** (50 mg) was dissolved in MeOH (15 ml) and Na<sub>2</sub>CO<sub>3</sub> (90 mg) was added. The mixture was stirred at room temp. for 24 hr, poured into H<sub>2</sub>O, extrd with CHCl<sub>3</sub>, dried and concd *in vacuo*, yielding maritimin (**6**) quantitatively.

*Epoxidation of 4*. Compound **4** (60 mg) was dissolved in CHCl<sub>3</sub> (15 ml) and 3 mequiv. of *m*-chloroperbenzoic acid was added. The mixture was stirred at room temp. for 6 hr, poured into dil. Na<sub>2</sub>SO<sub>3</sub> soln, washed with satd NaCO<sub>3</sub>H soln, extrd with CHCl<sub>3</sub>, dried and concd *in vacuo*. Crystallization from Me<sub>2</sub>CO-*n*-hexane gave needles (90%) of maritimin (**6**).

*Acknowledgements*—This work was supported by a grant from the Assessorial Commission for Scientific and Technical Research of the Ministry of Universities and Investigation.

## REFERENCES

1. González, A. G., Bermejo, J., Mansilla, H., Massanet, G. M., Cabrera, I., Amaro, J. M. and Galindo, A. (1977) *Phytochemistry* **16**, 1836.
2. González, A. G., Bermejo, J., Mansilla, H., Galindo, A., Amaro, J. M. and Massanet, G. M. (1978) *J. Chem. Soc. Perkin Trans.* **1**, 1243.
3. González, A. G., Bretón, J. L. and Stockel, J. (1974) *An. Quim.* **70**, 231.
4. González, A. G., Bermejo, J., Massanet, G. M., Amaro, J. M. and Domínguez, B. (1976) *Phytochemistry* **15**, 991.
5. González, A. G., Bermejo, J., Bretón, J. L. and Fajardo, M. (1973) *An. Quim.* **69**, 667.
6. Zürcher, R. F. (1963) *Helv. Chim. Acta* **46**, 2054.
7. Pregosin, P. S., Randall, E. W. and McMurry, T. B. H. (1972) *J. Chem. Soc. Perkin Trans.* **1**, 299.
8. Kori, K., Komono, T., Sangare, M., Septe, B., Delpech, B., Ahond, A. and Lukacs, G. (1974) *Tetrahedron Letters* 1157.
9. Tolstykh, L. P., Scheichenko, V. I., Ban'koskii, A. I. and Rybalko, K. S. (1968) *Khim. Prir. Soedin.* **4**, 384.